

Objectives

Which lab values

Survey of all acute care therapists in the system:
123 respondents

OH resources available

• eSource: Therapist Resources: Lab Value an Vital Sign Resources (APTA)

-	Transmit Resources		
	and the second second		
	The second second second		
	- 1	· · · · ·	
-			
-			
and in case of			
International Advances			
incident.			

OHIOHEALTH Rehab Clinical Practice Guideline for VTE
 Referenced from APTA VTE CPG

-

 eSource: Standard work: Clinical Practice Guidelines

Sender Wei, Rr. Circui Packa Gadetres-

*Reference Ranges

Depicts homeostasis

- Changes with age, sex, weight, fluid status, physiologic changes
 Individuals can have different tolerances
- Not meant to be memorized
- Depends on the lab and what reagent kit or diagnostic instrument is used (why ranges will change between hospitals and literature)

Look at TRENDS!

SIGNS SYMPTOMS

Symptoms based approach

• We shouldn't just look at one specific number in time

Along with monitoring lab values we should be looking at vitals and symptoms
 Monitor vitals
 Mer, BP, RK, 590,200
 Kap 400 or :380
 Soc 40%
 Dysrhythmia
 Pt symptomology
 New onset or worsening
 Terad (vitals or lab)
 Collaborate with health care team

Complete Blood Count-CBC

4

CBC reference ranges

	WBC	Hgb	Hct	Platelets
Males	4.5- 11 K/mcL	13.5-17.5 g/dL	41%-53%	150-400 K/mcL
Females	4.5- 11 K/mcL	12.0- 16.0 g/dL	36%-46%	150-400 K/mcL

White Blood Cells (WBCs) 4.5-11K/mcL

WBCs

- Routine test to identify the presence of infection, inflammation or allergens
 S different types of WBCs
 Neutrophysion
 Basophil
 Eosinophil
 Monocyte
 Lymphocyte

Leukocytosis (>11 K/mcL)

Infection	'
Leukemia	
Neo p lasm	
Sickle-cell disease	
Stres/pain	,
Chronic inflammation	
Trauma	
Surgery	
Smoking	
Connective tissue disease	

- Fever, malaise, lethargy, dizziness, bleeding, bruising, painful inflamed joints, lymphadenopathy
- Rehab implications:
- Consider timing of therapy: WBC are at lowest levels early in AM and peak in late afternoon

Leukopenia (<4 K/mcL)

Viral infection	•
Chemotherapy/Radiation	
Aplastic anemia	•
Autoimmune disease	
Hepatitis	
Leukemia	
Malignant cancer	

Signs/Symptoms

- Anemia, weakness, fatigue, fever, HA, SOB, Rehab implications:
- Questionable tolerance to therapy due to possible presentation of fever, fatigue, weakness and/or SOB

Neutropenia (<1.5 K/mcL)

Signs/Symptoms

- Low-grade fever, skin abscesses, sore mouth
- Rehab implications:
 Questionable
 tolerance to therapy due
 to possible presentation
 - of fever, fatigue, weakness and/or SOB

Red Blood Cells

Hemoglobin (Hb) Hematocrit (Hct)

	Hgb	Hct
Males	13.5-17.5 g/dL	41%-53%
Females	12.0-16.0 g/dL	36%-46%

Polycythemia

Congenital heart disease	•
Severe dehydration	
СОРД	
CHF	
Severe Burns	
High altitude	
Myeloproliferative Neoplasm	

Signs/Symptoms:

Orthostasis, presyncope, dizziness, arrhythmias, seizure, CHF onset/exacerbation, angina, symptoms of TIA or MI, headache

Anemia- down-trending Hgb/Hct

Hemorrhage	•
Neo plasia	
Lymphoma	
Systemic lupus erythematosus	
Sarcoid osis	
Renal disease	
Sickle cell anemia	
Splenomegaly	
RBC destruction	

- Signs/Symptoms:
- Decreased endurance, decreased uccreased endurance, decreased activity tolerance, palloç tachycardia, orthostatic hypotension, SOB, diziness, chest pain, arrhythmia, HA, cold hands/feet
- Rehab implications: Impaired endurance

Impact of Low Hgb during PT

Anemia clinical implications

- Monitor vitals including SpO2
 Assist with predicting tissue perfusion
 Watch for clinical desaturation
 - Watch for clinical desaturations (SpO2 <88% during exercise or greater than 4% decrease from rest)
- Consult with medical interprofessional team along with monitoring for signs and symptoms since Hgb levels and blood transfusions are individualized.

Platelets 150-400k/mcL ×50 thrombocytosis/thrombocythemia

Platelets

 Essential component of hemostasis and initiating the clotting cascade

Thrombocytosis (PLT >400K/mcL)

Response to stress	• R
Infection/inflammation	
Trauma	
Exercise	
Ovulation	• S
Splenectomy	
Cancer	
Iron deficiency	
Hemolysis	

Rehab implications:

- Increases risk for thrombosis formation and increased risk for bleeding, impaired tolerance
- Signs/Symptoms:
- Weakness, headaches, dizziness, chest pain, tingling hands/feet

Thrombocytopenia (<140 K/mcL)

Leukemia
Chemotherapy
DIC
НІТ
ТТР

- Rehab implications:
 Avoid activities that could cause
 - bruising or falls
 Avoid resistive exercises to avoid intramuscular bleeding
 - Avoid Valsalva maneuver (blood vessels in eyes/nose)
- Avoid brushing teeth Signs/Symptoms:
 - Petechiae, ecchymosis, fatigue, jaundice

aPTT/INR

Clotting cascade

Blood viscosity

Sticky or thickness of blood

- Factors affecting bleeding viscosity

 - Hematocrit
 Hydration
 Malabsorption
 Vitamin K deficiencies
 Hepatitis/cirrhosis/liver disease

aPTT- activated partial thromboplastin time

- Evaluates the intrinsic pathway of the clotting cascade
- Reference range is variable due to reagents at each lab • 23-34 seconds normal range
 - 68-104 seconds therapeutic range
- Utilized in measuring dosage of Heparin
- Review chart to determine reason for use of heparin

INR- International Normalization Ratio

- · Assesses the extrinsic coagulation pathway
- Calculated from the PT (prothrombin time) result to minimize variations between labs
- Monitors dosage/effectiveness of Coumadin (Warfarin)

- Normal 0.8-1.2
 Therapeutic Ranges
 Most clinical stuations: INR 2.0-3.0
 Mechanical Prosthetic Valve: INR 2.5-3.5
 Critical: INR 35.0
- · Review chart to determine reason for use of Coumadin

INR

• Expert opinion

- 4-5 resistive exercises should be held and participation in light exercise (RPE <11) should be performed
 Assess for falls and restrict ambulation if gait is unsteady
- Assess for fails and restrict ambuilation if gait is unsteady
 >5.0 Discussions with medical team should be held regarding the patient safety
- >6.0 Discussion with the medical team to consider bedrest until INR is corrected (usually within 48 hours)

APTA 2022 CPG on VTE Key action statements

13 Mobilize individuals with an IVC filter

14 Consult the medical team to initiate mobility with a pt with distal LE DVT not treated with anticoagulant or IVC

Troponin

 $cTnT \le 22ng/L$ male $cTnT \le 14ng/L$ female

Connersered Addroppe Connersered Addropper Connersered Connersered Connersered

Troponin-cTn

- Biomarker that is sensitive and specific to the myocardium of the heart
- Released when cardiac injury occurs (can be detected as early as 3 hours and can elevated up to 3 days after insult)
- Assist in diagnosing myocardial infarction
 Can be elevated due to stress of myocardium without evidence of MI Will see a trend in elevation of cTn with MI
 Typically peak around 48 hours
 Important to look at the change over time to indicate MI
 OH 20% data from baseline cTn
- Pts who have PCI revascularization, there may be a protracted elevation of troponin levels

Other clinical scenarios that increase Troponin

Rhabdomyolysis with cardiacd amage	Cardiac surgery
Renal failu re	Large body surface area burns
In flammatory disease	PE
Myocarditis Bidocarditis	Pulm HTN
Hypertrophic cardiomyopathy	Aortic valve disease
Drugtoxicity	Aortic disection
Critical illness	COPD
CHF	Blunt threacic damage
Sepsis	Acute neuro disease
HTN emergen cy	• CVA • SAH

Electrolyte balance

Looking at fluid balance and electrolyte balance
Important for basic functioning

Nerve conduction
 Muscle contraction and relaxation
 Cardiac rhythm and conduction
 Bone health

Hypervolemia

Excessive IV fluids
Hypertonic fluids

Inadequate output
 CHF
 Cirrhosis
 Renal insufficiency/failure

Signs Pitting edema
SOB

۲

-

1

SOB
Anasarca
JVD
HTN
Tachycardia
Crackles

Hyponatremia (<135 mEq/L)

Diuretic use	
Burns/wounds	
Hypotonic IV use	
Cirrhosis	
Gl impairment	

S	igns/Symptoms:
•	Headache
•	Lethargy

- Confusion
 Absent/diminished reflexes Seizures
- Coma
 Nausea/vomiting/diarrhea
- Hypovolemic hyponatremia
 Poor skin tugor
 Orthostatic hypotension/lachycardia
 Hypervolemia hyponatremia
 HN, tachycardia
 Pitting edema

Hypernatremia (>145 mEq/L)

Hypovolemia	Signs/Syr
Increased Na intake	Seizure
Severe vomiting	• Coma
CHF	 Hypoter Tachyca
Cushing's syndrome	• Decreas
Diabetes	

mptoms: lity/agitation

nsion

irdia

sed urine output

Hyperkalemia(>5.1 mmol/L)

Renal failure
Metabolic acidosis
DKA
Addison's disease
Excess K+ supplements
Blood transfusions

Signs and Symptoms • Muscle weakness, flaccid paralysis • Paresthesia

BradycardiaHeart block

• V-fib

Cardiac arrest

Hypokalemia (<3.5 mmol/L)

Diamhea/vomiting	
GI impairment	
Diuretics	
Cushing syndrome	
Malnutrition	
ETOH abuse	
Restrictive diets	

- Signs and Symptoms • Extremity weakness
- Hyporeflexia
- Paresthesia
- Paresuresia
 Leg cramps
 ECG changes (ST depression, T wave inversion), dysrhythmias, cardiac arrest
- Hypotension
- Diminished bowel function, constipation, abdo minal distension, paralytic ileus

Creatinine

Males: 0.5-1.3mg/dL Female: o.4-1.1mg/dL

Up-trending Creatinine

Renal disease

Mus cular dystrophy

Rhabdomyolysis

- - Signs/Symptoms: Reduced urine output
 - Dark colored urine
 - Edema
 - Back pain • Low fever
 - Fatigue
 - Headache Confusion
 - Dyspnea

Ammonia

11-35 mmol/L

Up-trending Ammonia

Cirrhosis
Severe hepatitis
Reye's syndrome
Severe heart disease
Kidney failure
Severe GI bleeding

- Signs and Symptoms
- Hepatic encephalopathy
 Confusion
- Lethargy
- Daytime sleepinessTremors
- Decreased fine motor skills
- Speech impairment
- Numbness and tingling

Case Studies

Case #1

 A 65-year-old male underwent bowel resection for mesenteric intestinal ischemia and currently has an open abdominal incision due to compartment syndrome. He is being treated for septic shock and is on a low dose of Levophed (norepinephrine support.

• The patient's INR is 3.6; hemoglobin is 8.7 g/dL

• What further information would be helpful?

Case #2

 A 31-year-old female with no significant PMH was emergently intubated and admitted to the ICU with respiratory failure after a diagnosis of H1N1 influenza.

 While reviewing the chart, the therapist notes an elevated troponin cTnT of 25ng/mL. The EKG interpretation states no T wave or ST segment abnormality.

Thoughts?

In this case, which of the following conditions would most likely be the reason for the elevated troponin level?

Case #2

A. Drug toxicity
 B. End stage renal failure
 C. Myocardial infarction
 D. Severe critical illness

Case #3

 57-year-old female presents with a subarachnoid hemorrhage (SAH) and underwent an aneurysm coiling one week ago. The therapist notes a downward trending sodium of 120mEq/L in the chart.

 What might the therapists anticipate as signs or symptoms during their session?

Case #4

67-year-old male with a PMH of ETOH abuse, HTN, DM2 and active smoker presents with acute GI bleed with a Hgb 5.4 g/dL. The patient undergoes an EGD with 2 bands placed for esophageal variceal. The patient receives 2 units of pRBCs.

PT and OT are consulted the following day. Hgb 7.2g/dL.

What further information is needed?

Case #4

• 2 days have passed since the initial evaluation from PT and OT.

• On eval

Pt ambulated 75 ft with CGA
 Modified Borg 4/10.

• Repeat Hgb shows a 6.9 g/dL

• What now?

Case #4 His last PT session, pt was complaining of calf pain and noted to have redness and swelling. RN and MD were notified • Doppler U/S completed and pt with acute RLE DVT

Case #5

- 48-year-old female patient with leukemia is admitted for chemotherapy treatment. Which lab values will most likely help direct therapy intervention?
- WBC remaining stable at 0.5 K/mcL for the past 2 lab draws

Platelets up-trending from 10K/mcL to 17K/mcL

Should you proceed with your therapy evaluation?

Questions

References

Laboratory Values Interpretation Resource. APTA Acute Care Physical Therapy- APTA Task Forze on Lab Values 7/2019.
Hillegass E, Puthoff M, FreseEM, et al. Roleof physical therapists in the management of individuals at risk for or diagnozed with venous thromboembolism evidence-based clinical practiceguideline2022. APTA; doi/10.1093/ptj/pax057/6885463. Accessed 5/18/22
Malone Di, Bishop KL. Physical Therapy in Aaste Care: A Clinician's Guide. Thorofare, N.F. S.ACK Incorporated; 2006.
Liu Z, Tao X, Chen Y, fan Z, E Y Bed rest vers us early ambulation with standard anticoagulation in the management of deep vein thrombosis a meta- analysis. PLoS One. 2015 Apr 10;10(4):e012138. doi: 10.1378/journal.pone.021388. PMID: 25860350;PMCID: PMC4393252.
Miner DG, Parcetich K, Smith K. Troponin Elevation followingPercutaneousCoronary Intervention in Acute Coronary Syndrome Clinical Dedsion/Vakingfa Early Mobility. JACPT 2021;0(0):1-10.
Kim K, W on S, Kim J, Lee E, KimK, Park S.Meta-analysis of complication as a risk factor for early ambulation after percutaneous coronary intervention. Er. Cardiovasc Nurs. 2013;12(5):429-436.
Fukushima T, Nakano J, Ishii S, et al. Influence of H emogbbin Level on Muscle and Physical Functions, Activities of DailyLiving and Quality of Life in Rtians With H ematological Malignandes. Integrative Cancer Therapies. 2019;18:1-40.
Tuz son A. How high istoo high?INR andacute care physical therapy. Acute Care Pers pedives. 2009.

Peterson, Michelle. The Impact of Low Hemoglobin on the Percentage of AdverseEventsDuring Physical Therapy in the Aute Care Setting, Journal of Aute Care Physical Therapy. 2015;6;8:34.